RAS BiologyБиология внутренних вод Inland Water Biology

  • ISSN (Print) 0320-9652
  • ISSN (Online) 3034-5227

Some Characteristics of Three Strains of the Black Sea Algal Viruses and Their Impact on Planktonic Microalgae

PII
S30345227S0320965225050096-1
DOI
10.7868/S3034522725050096
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 18 / Issue number 5
Pages
869-882
Abstract
Three strains of algal viruses (TvV-SM2, IgV-SS1, EhV-SS2) were isolated from the coastal waters of the Black Sea in 2022–2023. The first strain caused lysis of cells of the green algae and , the second affected cells of the pyrimesiophyte , and the third lysed the coccolithophore . No other hosts of the pathogens were detected during the study of possible contact of the isolated viruses with indicator cultures of 32 species of marine microalgae. Viral particles of all three strains had the shape of a regular convex icosahedron, and their diameter ranged from 48 to 174 nm. They were found to have a second membrane – a supercapsid. The titer of TvV-SM2 was 1.3 × 10 virions/ml, IgV-SS1 and EhV-SS2 – 3.1 × 10 and 2.5 × 10 virions/ml, respectively. The effect of different concentrations of copper ions on the activity of algal viruses was studied for the first time using TvV-SM2 as an example. Under the influence of the toxicant at a concentration of 100 µg/l, complete suppression of the pathogen was revealed. When TvV-SM2 algal virus affected , the latent period of infection was 24 h, and the rate of algal cell lysis was equal to 2.59 day on average. Upon contact of EhV-SS2 algal virus with culture, the latent period increased by 4.2 times, and the lysis rate decreased by almost an order of magnitude. During the latent period of infection, a 1.7–2-fold decrease in the efficiency of photosystem II was observed in both infected cultures. By the end of the experiments, an average of 10% of algal cells were not lysed.
Keywords
Черное море альговирусы микроводоросли Array Array лизис культуры
Date of publication
08.12.2025
Year of publication
2025
Number of purchasers
0
Views
35

References

  1. 1. Кораблина И.В., Барабашин Т.О., Геворкян Ж.В., Евсеева А.И. 2021. Динамика распределения тяжелых металлов в водной толще северо-восточной части Черного моря после 2000 г // Тр. ВНИРО. Т. 183. С. 96.
  2. 2. Стельмах Л.В., Степанова О.А. 2020. Влияние вирусной инфекции на функционирование и лизис черноморских микроводорослей Tetraselmis viridis (Chlorophyta) и Phaeodactylum tricornutum (Bacillariophyta) // Биология внутр. вод. № 4. С. 373. https://doi.org/10.31857/S0320965220030171
  3. 3. Arsenieff L., Simon N., Rigaut-Jalabert F. et al. 2019. First viruses infecting the marine diatom Guinardia delicatula // Front. Microbiol. V. 9. P. 3235. https://doi.org/10.3389/fmicb.2018.03235
  4. 4. Baudoux A.C., Noordeloos A.A.M., Veldhuis M.J.W. et al. 2006. Virally induced mortality of Phaeocystis globosa during two spring blooms in temperate coastal waters // Aquat. Microb. Ecol. Т. 44. № 3. P. 207. https://doi.org/10.3354/ame044207
  5. 5. Beckett S.J., Weitz J.S. 2018. The effect of strain level diversity on robust inference of virus-induced mortality of phytoplankton // Frontiers in Microbiology. Т. 9. P. 371936. https://doi.org/10.3389/fmicb.2018.01850
  6. 6. Bettarel Y., Kan J., Wang K. et al. 2005. Isolation and preliminary characterisation of a small nuclear inclusion virus infecting the diatom Chaetoceros cf. gracilis // Aquat. Microb. Ecol. Т. 40. № 2. P. 103. https://doi.org/10.3354/ame040103
  7. 7. Bidle K.D., Haramaty L., Barcelos e Ramos J., Falkowski P. 2007. Viral activation and recruitment of metacaspases in the unicellular coccolithophore, Emiliania huxleyi // Proceedings of the National Academy of Sciences. Т. 104. № 14. P. 6049. https://doi.org/10.1073/pnas.0701240104
  8. 8. Bratbak G., Egge J.K., Heldal M. 1993. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms // Mar. Ecol. Prog. Ser. V. 93. P. 39. https://doi.org/10.3354/meps093039
  9. 9. Castberg T., Thyrhaug R., Larsen A. et al. 2002. Isolation and characterization of a virus that infects Emiliania huxleyi (Haptophyta) // J. Phycol. T. 38. № 4. P. 767. https://doi.org/10.1046/j.1529-8817.2002.02015.x
  10. 10. Cottrell M.T., Suttle C.A. 1995. Dynamics of lytic virus infecting the photosynthetic marine picoflagellate Micromonas pusilla // Limnol., Oceanogr. Т. 40. № 4. P. 730. https://doi.org/10.4319/lo.1995.40.4.0730
  11. 11. Coy S.R., Gann E.R., Pound H.L. et al. 2018. Viruses of eukaryotic algae: diversity, methods for detection, and future directions // Viruses. T. 10. № 9. P. 487. https://doi.org/10.3390/v10090487
  12. 12. Danovaro R., Corinaldesi C., Dell’Anno A. et al. 2011. Marine viruses and global climate change // FEMS Microbiol. Rev. T. 35. № 6. P. 993. https://doi.org/10.1111/j.1574-6976.2010.00258.x
  13. 13. Evans C., Archer S.D., Jacquet S. et al. 2003. Direct estimates of the contribution of viral lysis and microzooplankton grazing to the decline of a Micromonas spp. population // Aquat. Microb. Ecol. Т. 30. № 3. P. 207. https://doi.org/10.3354/ame030207
  14. 14. Focardi A., Ostrowski M., Goossen K. et al. 2020. Investigating the diversity of marine bacteriophage in contrasting water masses associated with the East Australian Current (EAC) System // Viruses. T. 12. № 3. P. 317. https://doi.org/10.3390/v12030317
  15. 15. Frada M.J., Rosenwasser S., Ben-Dor S. et al. 2017. Morphological switch to a resistant subpopulation in response to viral infection in the bloom-forming coccolithophore Emiliania huxleyi // PLoS Pathogens. T. 13. № 12. P. e1006775. https://doi.org/10.1371/journal.ppat.1006775
  16. 16. Garza D.R., Suttle C.A. 1998. The effect of cyanophages on the mortality of Synechococcus spp. and selection for UV resistant viral communities // Microb. Ecol. V. 36. P. 281. https://doi.org/10.1007/s002489900115
  17. 17. Guillard R., Ryther J. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran // J. Can. Microbiol. V. 8. P. 229. https://doi.org/10.1139/m62-029
  18. 18. Horas E.L., Theodosiou L., Becks L. 2018. Why are algal viruses not always successful? // Viruses. T. 10. № 9. P. 474. https://doi.org/10.3390/v10090474
  19. 19. Jacquet S., Heldal M., Iglesias-Rodriguez D. et al. 2002. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection // Aquat. Microb. Ecol. V. 27. P. 111. https://doi.org/10.3354/ame027111
  20. 20. Jacquet S., Miki T., Noble R. et al. 2010. Viruses in aquatic ecosystems: important advancements of the last 20 years and prospects for the future in the field of microbial oceanography and limnology // Advances in Oceanography and Limnology. V. 1. P. 97. https://doi.org/10.4081/aiol.2010.5297
  21. 21. Jarvis B., Wilrich C., Wilrich P-T. 2010. Reconsideration of the derivation of Most Probable Numbers, their standard deviations, confidence bounds and rarity values // J. Appl. Microbiol. V. 109. P. 1660. https://doi.org/10.1111/j.1365-2672.2010.04792.x
  22. 22. Kim J., Yoon S.H., Choi T.J. 2015. Isolation and physiological characterization of a novel virus infecting Stephanopyxis palmeriana (Bacillariophyta) // Algae. T. 30. № 2. P. 81. https://doi.org/10.4490/algae.2015.30.2.081
  23. 23. Lawrence J.E., Brussaard C.P., Suttle C.A. 2006. Virus-specific responses of Heterosigma akashiwo to infection // Appl. and Environ. Microbiol. T. 72. № 12. P. 7829. https://doi.org/10.1128/AEM.01207-06
  24. 24. Levy J.L., Angel B.M., Stauber J.L. et al. 2008. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species // Aquat. Toxicol. V. 89. P. 82. https://doi.org/10.1016/j.aquatox.2008.06.003
  25. 25. Nagasaki K., Tomaru Y., Tarutani K. et al. 2003. Growth characteristics and intraspecies host specificity of a large virus infecting the dinoflagellate Heterocapsa circularisquama // Appl. Environ. Microbiol. T. 69. № 5. P. 2580. https://doi.org/10.1128/AEM.69.5.2580-2586.2003
  26. 26. Pagarete A., Grebert T., Stepanova O. et al. 2015. Tsv-N1: a novel DNA algal virus that infects Tetraselmis striata // Viruses. V. 7. P. 3937. https://doi.org/10.3390/v7072806
  27. 27. Pasulka A.L., Samo T.J., Landry M.L. 2015. Grazer and viral impacts on microbial growth and mortality in the southern California Current Ecosystem // J. Plankton Res. V. 37. P. 320. https://doi.org/10.1093/plankt/fbv011
  28. 28. Schmoker C., Hernandez-Leon S, Calbet A. 2013. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions // J. Plankton Res. V. 35. P. 691. https://doi.org/10.1093/plankt/fbt023
  29. 29. Schroeder D.C., Oke J., Malin G., Wilson W.H. 2002. Coccolithovirus (Phycodnaviridae): characterisation of a new large dsDNA algal virus that infects Emiliana huxleyi // Archives of virology. T. 147. P. 1685. https://doi.org/10.1007/s00705-002-0841-3
  30. 30. Short S.M. 2012. The ecology of viruses that infect eukaryotic algae // Environ. Microbiol. T. 14. № 9. P. 2253. https://doi.org/10.1111/j.1462-2920.2012.02706.x
  31. 31. Slagter H.A., Gerringa L.J., Brussaard C.P. 2016. Phytoplankton virus production negatively affected by iron limitation // Frontiers in Mar. Sci. T. 3. P. 156. https://doi.org/10.3389/fmars.2016.00156
  32. 32. Stelmakh L.V., Sagadatova R.R., Alatartseva O.S. 2024. The effect of viral infection on the Black Sea microalgae Tetraselmis viridis: the role of nutrients and copper ions // Functional Plant Biol. T. 51. № 2. https://doi.org/10.1071/FP23114
  33. 33. Stepanova O.A. 2016. Black Sea algal viruses // Rus. J. Mar. Biol. T. 42. P. 123. https://doi.org/10.1134/S1063074016020103
  34. 34. Suttle C.A. 2007. Marine viruses: major players in the global ecosystem // Nature Reviews Microbiol. V. 5. P. 801. https://doi.org/10.1038/nrmicro1750
  35. 35. Thomas R., Jacquet S., Grimsley N., Moreau H. 2012. Strategies and mechanisms of resistance to viruses in photosynthetic aquatic microorganisms // Advances in Oceanography and Limnology. T. 3. № 1. P. 1. https://doi.org/10.4081/AIOL.2012.5323
  36. 36. Thyrhaug R., Larsen A., Thingstad T.F., Bratbak G. 2003. Stable coexistence in marine algal host-virus systems // Mar. Ecol. Progress Series. T. 254. P. 27. https://doi.org/10.3354/meps254027
  37. 37. Tomaru Y., Tarutani K., Yamaguchi M. et al. 2004. Quantitative and qualitative impacts of viral infection on a Heterosigma akashiwo (Raphidophyceae) bloom in Hiroshima Bay, Japan // Aquat. Microb. Ecol. V. 34. P. 227. https://doi.org/10.3354/ame034227
  38. 38. Wilhelm S.W., Matteson A.R. 2008. Freshwater and marine virioplankton: a brief overview of commonalities and differences // Freshwater Biol. T. 53. № 6. Р. 1076. https://doi.org/10.1111/j.1365-2427.2008.01980.x
  39. 39. Wommack K.E., Colwell R.R. 2000. Virioplankton: viruses in aquatic ecosystems // Microbiol. and Mol. Biol. Reviews. V. 64. P. 69. https://doi.org/10.1128/MMBR.64.1.69-114.2000
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library