RAS BiologyБиология внутренних вод Inland Water Biology

  • ISSN (Print) 0320-9652
  • ISSN (Online) 3034-5227

The Influence of Light, Temperature and Nutrient Deficiency on the Structural and Functional Characteristics of the Coccolithophorid Emiliania huxleyi (Prynnesiophyceae)

PII
S30345227S0320965225050086-1
DOI
10.7868/S3034522725050086
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 18 / Issue number 5
Pages
860-868
Abstract
A clonal culture of the coccolithophore was isolated from the plankton of the Black Sea in February 2023. Its species identification was carried out using scanning electron microscopy and it was established that it belongs to type A. The optimal temperature for the development of this culture was revealed to be 20°C. The temperature coefficient (Q10) for the temperature range of 5–15°C was 3.36, and for the range of 10–20°C it was equal to 2.75. The influence of light on the structural and functional parameters of this species was studied. The maximum specific growth rate (1.37 day) was achieved at a light intensity of 157 μE/(m × s), and then it decreased as a result of light inhibition. The relative content of chlorophyll a per cell and dry weight decreased by 3–5 times as the light intensified from 8.5 to 425 μE/(m × s). The transfer of cells, which have the maximum intracellular pool of nutrients, into seawater depleted in nutrients, caused a decrease in the increase in their number and the efficiency of photosystem II, as well as an increase in cell volume and surface area. The sensitivity of photosystem II to phosphorus deficiency was higher than to nitrogen deficiency. Due to the intracellular pool of nutrients, this type of algae carried out 1.43–1.77 cell divisions.
Keywords
Черное море фитопланктон кокколитофорида свет температура биогенные вещества
Date of publication
08.12.2025
Year of publication
2025
Number of purchasers
0
Views
27

References

  1. 1. Биооптические характеристики морей, омывающих берега западной половины России, по данным спутниковых сканеров цвета 1998–2017 гг. 2018. М.: ООО “ВАШ ФОРМАТ”.
  2. 2. Стельмах Л.В. 2022. Особенности структурных и функциональных характеристик диатомовой водоросли Pseudosolenia calcar-avis // Биология внутр. вод. № 3. С. 300. https://dx.doi.org/10.31857/S0320965222030184
  3. 3. Стельмах Л. В. Влияние абиотических факторов на структурные и функциональные характеристики диатомовой водоросли Cerataulina pelagicа (Сleve) Hendey// Биология внутр. вод. № 2. С. 174. https://doi.org/10.31857/S0320965223020237
  4. 4. Balch W.M., Holligan P.M., Ackleson S.G., Voss K.J. 1991. Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine // Limnol., Oceanogr. V. 36. P. 629. https://doi.org/10.4319/ lo.1991.36.4.0629
  5. 5. Balch W.M., Drapeau D.T., Cucci T.L. et al. 1999. Optical backscattering by calcifying algae: Separating the contribution of particulate inorganic and organic carbon fractions // J. Geophys. Res. Oceans. V. 104(C1). P. 1541. https://doi.org/10.1029/1998JC900035
  6. 6. Bratbak G., Egge J.K., Heldal M. 1993. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms // Mar. Ecol. Prog. Ser. V. 93. P. 39. https://doi.org/10.3354/meps093039
  7. 7. Buitenhuis E.T., Pangerc T., Franklin D.J. et al. 2008. Growth rates of six coccolithophorid strains as a function of temperature // Limnology and Oceanography. V. 53. P. 1181. https://doi.org/10.4319/lo.2008.53.3.1181.
  8. 8. Eppley R., Rogers W.J.N., McCarthy J.J. 1969. Half-saturation constants for uptake of nitrate and ammonium by marine phytoplankton // Limnol., Oceanogr. V. 14. P. 912.
  9. 9. Gafar N.A., Eyre B.D., Schulz K.G. 2018. A conceptual model for projecting coccolithophorid growth, calcification and photosynthetic carbon fixation rates in response to global ocean change // Frontiers in Mar. Sci. V. 4. P. 1. https://doi.org/10.3389/fmars.2017.00433
  10. 10. Glibert P.M., Wilkerson F.P., Dugdale R.C. et al. 2016. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions // Limnol., Oceanogr. V. 61. P. 165. https://doi.org/10.1002/lno. 10203
  11. 11. Guillard R.R.L., Ryther J.H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve // Can. J. Microbiol. V. 8. P. 229. https://doi.org/10.1139/m62-029
  12. 12. Harris G.N. 2005. Acclimation of Emiliania huxleyi (Prymnesiophyceae) to photon flux density // J. Phycol. V. 41. P. 851. https://doi.org/10.1111/j.1529-8817.2005.00109.x
  13. 13. Kemp A.E.S., Villareal T.A. 2018. The case of the diatoms and the muddled mandalas: Time to recognize diatom adaptations to stratified waters // Prog. Oceanogr. V. 167. P. 138. https://doi.org/10.1016/j.pocean.2018.08.002
  14. 14. Kopelevich O.V., Burenkov V.I., Sheberstov S.V. et al. 2014. Satellite monitoring of coccolithophore blooms in the Black Sea from ocean color data // Remote Sensing Environ. V. 146. P. 113. https://doi.org/10.1016/j.rse.2013.09.009
  15. 15. Kubryakova E.A., Kubryakov A.A., Mikaelyan A.S. 2021. Winter coccolithophore blooms in the Black Sea: Interannual variability and driving factors // J. Mar. Syst. V. 213. P. 103461. https://doi.org/10.1016/j.jmarsys.2020.103461
  16. 16. Loebl M., Cockshutt A.M., Campbell D.A., Finkel Z.V. 2010. Physiological basis for high resistance to photoinhibition under nitrogen depletion in Emiliania huxleyi // Limnol., Oceanogr. V. 55. P. 2150. https://doi.org/10.4319/lo.2010.55.5.2150
  17. 17. Mikaelyan A.S., Pautova L.A., Pogosyan S.I., Sukhanova I.N. 2005. Summer bloom of coccolithophorids in the northeastern Black Sea // Oceanology. V. 45 (Suppl. 1). P. 127.
  18. 18. Mikaelyan A.S., Silkin V.A., Pautova L. A. 2011. Coccolithophorids in the Black Sea: their interannual and longterm changes // Russ. Acad. Sci. Oceanol. V. 51. P. 39. https://doi.org/10.1134/S0001437011010127
  19. 19. Mikaelyan A.S., Kubryakov A.A., Silkin V.A. et al. 2018. Regional climate and patterns of phytoplankton annual succession in the open waters of the Black Sea // Deep-Sea Res. Pt. I. V. 142. P. 44. https://doi.org/10.1016/j.dsr.2018.08.001
  20. 20. Nielsen M.V. 1997. Growth, dark respiration and photosynthetic parameters of the coccolithophorid Emiliania huxleyi (Prymnesiophyceae) acclimated to different day lengthirradiance combinations // J. Phycol. V. 33(5). P. 818. https://doi.org/10.1111/j.0022-3646.1997.00818.x
  21. 21. Paasche E. 2002. A review of the coccolithophorid Emilinia huxleyi (Prymnesiophyceae) with particular reference to growth, coccolith formation, and calcification – photosynthesis interactions // Phycol. V. 40. P. 503. https://doi.org/10.2216/i0031-8884-40-6-503.1
  22. 22. Perrin L., Probert I., Langer G., Aloisi G. 2016. Growth of the coccolithophore Emiliania huxleyi in lightand nutrient-limited batch reactors: relevance for the BIOSOPE deep ecological niche of coccolithophores // Biogeosciences. V. 13. P. 5983. www.biogeosciences.net/13/5983/2016/doi:10.5194/ bg-13-5983-2016
  23. 23. Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements. JGOFS Report Nr. 19, vi+170 pp. Reprint of the IOC Manuals and Guides No. 29. UNESCO. 1994. https://hdl.handle.net/11329/220
  24. 24. Read B.A., Kegel J., Klute M.J. et al. 2013. Pan genome of the phytoplankton Emiliania underpins its global distribution // Nature. V. 499. P. 209. https://doi.org/10.1038/nature12221
  25. 25. Riegman R., Stolte W., Noordeloos A.M. et al. 2000. Nutrient uptake and alkaline phosphatase (ec 3:1:3:1) activity of Emiliania huxleyi (Prymnesiophyceae) during growth under n and p limitation in continuous cultures // J. Phycol. V. 36. P. 87. https://doi.org/10.1046/j.1529-8817.2000.99023.x
  26. 26. Rijssel M., Gieskes W.W.C. 2002. Temperature, light, and the dimethylsulfoniopropionate (DMSP) content of Emiliania huxleyi (Prymnesiophyceae) // J. Sea Res. V. 48. P. 17. https://doi.org/10.1016/S1385-1101 (02)00134-X
  27. 27. Rosas-Navarro A., Langer G., Ziveri P. 2016. Temperature affects the morphology and calcification of Emiliania huxleyi strains // Biogeosciences. V. 13. P. 2913. https://doi.org/10.5194/bg-13-2913-2016
  28. 28. Silkin V., Pautova L., Podymov O. et al. 2023. Phytoplankton dynamics and biogeochemistry of the Black Sea // J. Mar. Sci. Eng. V. 11. P. 1196. https://doi.org/10.3390/jmse11061196
  29. 29. Steele J. H. 1962. Environmental control of photosynthesis in the sea // Limnol., Oceanogr. V. 7. P. 137. https://doi.org/10.4319/lo.1962.7.2.0137
  30. 30. Stelmakh L.V., Georgieva E.Yu. 2014. Microzooplankton: the trophic role and involvement in the phytoplankton loss and bloom-formation in the Black Sea // Turkish J. Fish. Aquat. Sci. V. 14. P. 955. https://doi.org/10.4194/1303-2712-v14_4_15
  31. 31. Stelmakh L., Gorbunova T. 2018. Emiliania huxleyi blooms in the Black Sea: influence of abiotic and biotic factors // Bot. (Bot. Lith.). V. 24(2). P. 172. https://doi.org/10.2478/botlit-2018-0017
  32. 32. Strom S., Wolfe G., Slajer A. et al. 2003. Chemical defence in the microplankton II: Inhibition of protist feeding by bdimethylsulfoniopropionate (DMSP) // Limnol., Oceanogr. V. 48. P. 230. https://doi.org/10.4319/lo.2003.48.1.0230
  33. 33. Taylor A.R., Brownlee C., Wheeler G. 2017. Coccolithophore cell biology: chalking up progress // Ann. Rev. Mar. Sci. V. 9. P. 283. https://doi.org/10.1146/annurev-marine-122414-034032
  34. 34. Tyrrell T., Merico A. 2004. Emiliania huxleyi: bloom observations and the conditions that induce them // Coccolithophores. Berlin; Heidelberg: Springer. P. 75. https://doi.org/10.1007/978-3-662-06278-4_4
  35. 35. Yasakova O.N., Okolodkov Y.B., Chasovnikov V.K. 2017. Increasing contribution of coccolithophorids to the phytoplankton in the northeastern Black Sea // Mar. Pollut. Bull. V. 124(1). P. 526. https://doi.org/10.1016/j.marpolbul.2017.07.037
  36. 36. Young J.R., Geisen M., Cros L., et al. 2003. A guide to extant coccolithophore taxonomy // J. Nannoplankton Res. Special Is. 1. https://doi.org/10.58998/jnr2297
  37. 37. Yunev O.A., Carstensen J., Stelmakh L.V. et al. 2021. Reconsideration of the phytoplankton seasonality in the open Black Sea // Limnol., Oceanogr. Lett. V. 6. P. 51. https://doi.org/10.1002/lol2.10178
  38. 38. Ziveri P., Baumann K.-H., Boeckel B. et al. 2004. Biogeography of selected holocene coccoliths in the Atlantic Ocean // Coccolithophores. Berlin; Heidelberg: Springer. P. 403. https://doi.org/10.1007/978-3-662-06278-4_15
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library