- PII
- S30345227S0320965225050065-1
- DOI
- 10.7868/S3034522725050065
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 18 / Issue number 5
- Pages
- 836-848
- Abstract
- The study results of the algicidal activity of the MK17 metabolites crude isolated from the soil actinobacterium MK17 biomass are presented in this paper. The mechanisms of metabolites MK17 stress effect on cyanobacteria were investigated. MK17 metabolites exhibit algicidal activity against cyanobacteria and green algae, with cyanobacteria being more sensitive to their effects than green algae. It was revealed that under the effect of MK17 metabolites crude there is a decrease in the concentrations of microcystins formed by toxigenic cyanobacteria and in the medium. It is shown that MK17 metabolites cause damage to the functions of the cyanobacterial photosystem. Increased generation of active oxygen species in cells and, as a result, an increase in the content of malonic dialdehyde and activation of antioxidant defense mechanisms indicate the development of oxidative stress in cyanobacterial cells under the MK17 metabolites effect.
- Keywords
- Array альгицидные метаболиты MK17 цианобактерии микроцистины экзополисахариды фотосинтез окислительный стресс
- Date of publication
- 09.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 32
References
- 1. Дмитриева О.А., Семенова А.С., Казакова Е.Ю. 2024. Структура и динамика планктонных сообществ в прибрежной зоне Куршского залива Балтийского моря в 2017–2021 гг. в период цианобактериальных “цветений” воды // Биология внутр. вод. Т. 17. № 1. С. 22. https://doi.org/10.31857/S0320965224010028
- 2. Зайцева Т.Б., Медведева Н.Г. 2019. Молекулярные механизмы стрессового ответа цианобактерии Planktothrix agardhii на воздействие 4-трет-октилфенола // Микробиология. Т. 88. № 4. С. 417. https://doi.org/10.1134/S0026365619040141
- 3. Зайцева Т.Б., Мильман Б.Л., Луговкина Н.В. и др. 2015. Влияние октили нонилфенолов на рост, фотосинтетическую активность и токсинообразование цианобактерии Planktothrix agardhii (gom.) Anagnostidis et Komarek // Гидробиол. журн. Т. 51. № 4. С. 40. http://dx.doi.org/10.1615/Hydrob.J.v51.i6.40
- 4. Зайцева Т.Б., Сафронова В.И., Медведева Н.Г. 2022. Streptomyces geldanamycininus Z374 – новый штамм с биоцидной активностью в отношении цианобактерий // Теоретическая и прикладная экология. № 1. С. 159. https://doi.org/10.25750/1995-4301-2022-1-159-166
- 5. Зайцева T.Б., Руссу A.Д., Медведева Н.Г. 2024. Стрессорное воздействие биоцидных метаболитов актинобактерии Streptomyces geldanamycininus Z374 на цианобактерии Microcystis aeruginosa // Теоретическая и прикладная экология. № 1. C. 175. https://doi.org/10.25750/1995-4301-2024-1-175-183
- 6. Маторин Д.Н., Тимофеев Н.П., Батаков A.Д. и др. 2024. Токсическое действие ципрофлоксацина на реакции фотосинтеза микроводоросли Scenedesmus quadricauda (Turp.) Bréb. // Теоретическая и прикладная экология. № 1. С. 150. https://doi.org/10.25750/1995-4301-2024-1-150-156
- 7. Aeby H. 1984. Catalase in vitro // Methods Enzymol. V. 105. P. 121.
- 8. Almeida A.C., Gomes T., Langford K. et al. 2017. Oxidative stress in the algae Chlamydomonas reinhardtii exposed to biocides // Aquat. Toxicol. V. 189. P. 50. https://doi.org/10.1016/j.aquatox.2017.05.014
- 9. Anabtawi H.M., Lee W.H., Al-Anazi A. et al. 2024. Advancements in biological strategies for controlling harmful algal blooms (HABs) // Water. V. 16. P. 224. https://doi.org/10.3390/w16020224
- 10. Bates L.S., Walderen R.D., Teare I.D. 1973. Rapid determination of free proline for water stress studies // Plant Soil. V. 39. P. 205.
- 11. Broddrick J.T., Ware M.A., Jallet D. et al. 2022. The Integration of physiologically relevant photosynthetic energy flows into whole genome models of light-driven metabolism // Plant J. V. 112. P. 603. https://doi.org/10.1111/tpj.15965
- 12. Cassier-Chauvat C., Marceau F., Farci S. et al. 2023. The Glutathione System: a journey from cyanobacteria to higher eukaryotes // Antioxidant. V. 12. P. 1199. https://doi.org/10.3390/antiox12061199
- 13. Chen Y.D., Zhu Y., Xin J.P. et al. 2021. Succinic acid inhibits photosynthesis of Microcystis aeruginosa via damaging PSII oxygen-evolving complex and reaction center // Environ. Sci. Pollut. Res. Int. V. 28. № 41. P. 58470. https://doi.org/10.1007/s11356-021-14811-8
- 14. Chua A., Sherwood O.L., Fitzhenry L. et al. 2020. Cyanobacteria-derived proline increases stress tolerance in Arabidopsis thaliana root hairs by suppressing programmed cell death // Front. Plant Sci. V. 11. P. 490075. https://doi.org/10.3389/fpls.2020.490075
- 15. Costa J.A.V., Lucas B.F., Alvarenga A.G.P. et al. 2021. Microalgae Polysaccharides: an overview of production, characterization, and potential applications // Polysaccharides. V. 2. P. 759. https://doi.org/10.3390/polysaccharides2040046
- 16. Coyne K.J., Wang Y., Johnson G. 2022. Algicidal Bacteria: a review of current knowledge and applications to control harmful algal blooms // Front. Microbiol. V. 13. P. 871177. https://doi.org/10.3389/fmicb.2022.871177
- 17. de Figueiredo D.R. 2024. Harmful cyanobacterial blooms: going beyond the “green” to monitor and predict HCBs // Hydrobiology. V. 3. P. 11. https://doi.org/10.3390/hydrobiology3010002
- 18. Donald L., Pipite A., Subramani R. et al. 2022. Streptomyces: still the biggest producer of new natural secondary metabolites, a current perspective // Microbiol. Res. V. 13. P. 418. https://doi.org/10.3390/microbiolres13030031
- 19. Filatova D., Jones M.R., Haley J.A. et al. 2021. Cyanobacteria and their secondary metabolites in three freshwater reservoirs in the United Kingdom // Environ. Sci. Eur. V. 33. https://doi.org/10.1186/s12302-021-00472-4
- 20. Gao Q.T., Tam N.F.Y. 2011. Growth, photosynthesis and antioxidant responses of two microalgal species, Chlorella vulgaris and Selenastrum capricornutum, to nonylphenol stress // Chemosphere. V. 82. P. 346. https://doi.org/10.1016/j.chemosphere.2010.10.010
- 21. Giannopolitis C.N., Ries S.K. 1977. Superoxide dismutase I. Occurrence in higher plants // Plant Physiol. V. 59. P. 309.
- 22. Grigoryeva N.Yu., Chistyakova L.V., Liss A.A. 2018. Spectroscopic techniques for estimation of physiological state of blue-green algae after weak external action // Oceanology. V. 58. № 6. P. 923. https://doi.org/10.1134/s0001437018060061
- 23. Gupta A., Sainis J.K., Bhagwat S.G., Chittela R.K. 2021. Modulation of photosynthesis in Synechocystis and Synechococcus grown with chromium (VI) // J. Biosciences. V. 46. https://doi.org/10.1007/s12038-020-00119-1
- 24. Herbert D., Phipps P.J., Stange R.E. 1971. Chapter III chemical analysis of microbial cells // Methods in Microbiology. V. 5. Part B. P. 209. https://doi.org/10.1016/S0580-9517 (08)70641-X
- 25. Hou X., Yan Y., Wang Y. et al. 2023. An insight into algicidal characteristics of Bacillus Altitudinis G3 from dysfunctional photosystem and overproduction of reactive oxygen species // Chemosphere. V. 310. P. 136767. https://doi.org/10.1016/j.chemosphere.2022.136767
- 26. Hu X., Luo K., Ji K. et al. 2022. ABC transporter slr0982 affects response of Synechocystis sp. PCC 6803 to oxidative stress caused by methyl viologen // Res. Microbiol. V. 173. Р. 103888. https://doi.org/10.1016/j.resmic.2021.103888
- 27. Huang W., Zhang S.B., Cao K.F. 2010. Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII // Plant. Cell. Physiol. V. 51. № 11. P. 1922. https://doi.org/oi:10.1093/pcp/pcq144
- 28. Igwaran A., Kayode A.J., Moloantoa K.M. et al. 2024. Cyanobacteria harmful algae blooms: causes, impacts, and risk management // Water, Air and Soil Pollut. V. 235. № 71. https://doi.org/10.1007/s11270-023-06782-y
- 29. Jeffrey S.W., Humprhråy G.E. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton // Biochem. Physiol. Pflanz. V. 167. P. 191.
- 30. Kong Y., Wang Q., Chen Y. et al. 2020. Anticyanobacterial process and action mechanism of Streptomyces sp. HJC-D1 on Microcystis aeruginosa // Environ. Progress and Sustainable Energy. e13392. https://doi.org/10.1002/ep. 13392
- 31. Kong Y., Wang Y., Miao L. et al. 2022. Recent advances in the research on the anticyanobacterial effects and biodegradation mechanisms of Microcystis aeruginosa with microorganisms // Microorganisms. V. 10. P. 1136. https://doi.org/10.3390/microorganisms10061136
- 32. Kuzikova I.L., Medvedeva N.G. 2022. Biocontrol and plant growth promotion potential of new antibiotic-producing Streptomyces fiavogriseus МК17 // IOP Conference Series: Earth and Environ. Sci. V. 979. P. 012020. https://doi.org/10.1088/1755-1315/979/1/012020
- 33. Kuzikova I.L., Sukharevich V.I., Shenin Yu.D., Medvedeva N.G. 2010. Biological abilities and identification of the polyene antifungal antibiotic perspective for protection from fungi biodeterioration // Biol. Bull. V. 37. № 2. P. 193. https://doi.org/10.1134/S106235901002015
- 34. Latifi A., Ruiz M., Zhang C.C. 2009. Oxidative stress in cyanobacteria // FEMS Microbiol Rev. V. 33. P. 258. https://doi.org/10.1111/j.1574-6976.2008.00134.x
- 35. Le V., Ko S.K., Kang M. et al. 2023. Effective control of harmful Microcystis blooms by paucibactin A, a novel macrocyclic tambjamine, isolated from Paucibacter aquatile DH15 // J. Cleaner Production. V. 383. P. 135408. https://doi.org/10.1016/j.jclepro.2022.135408
- 36. Liu Y., Li F., Huang Q. 2013. Allelopathic effects of gallic acid from Aegiceras corniculatum on Cyclotella caspia // J. Environ. Sci. V. 25. № 4. P. 776. https://doi.org/10.1016/S1001-0742 (12)60112-0
- 37. Liu J., Yang C., Chi Y. et al. 2019. Algicidal characterization and mechanism of Bacillus licheniformis Sp34 against Microcystis aeruginosa in Dianchi Lake // J. Basic Microbiol. V. 59. P. 1112. https://doi.org/10.1002/jobm.201900112
- 38. Luo J., Wang Y., Tang S. et al. 2013. Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa // PLoS ONE. V. 8(10). e76444. https://doi.org/10.1371/journal.pone.0076444
- 39. Madsen M.A., Semerdzhiev S., Twigg J.D. et al. 2023. Environmental modulation of exopolysaccharide production in the cyanobacterium Synechocystis 6803 // Appl. Microbiol. and Biotechnol. V. 107. P. 6121. https://doi.org/10.1007/s00253-023-12697-9
- 40. Mao F., He Y., Gin K.Y-H. 2020. Antioxidant responses in cyanobacterium Microcystis aeruginosa caused by two commonly used UV filters, benzophenone-1 and benzophenone-3, at environmentally relevant concentrations // J. Hazardous Mat. V. 396. Р. 122587. https://doi.org/10.1016/j.jhazmat.2020.122587
- 41. Masojídek J., Ranglová K., Lakatos G.E. et al. 2021. Variables governing photosynthesis and growth in microalgae mass cultures // Processes. V. 9. 820. https://doi.org/10.3390/pr9050820
- 42. Mignolet-Spruyt L., Xu E., Idänheimo N. et al. 2016. Spreading the news: subcellular and organellar reactive oxygen species production and signalling // J. Exper. Bot. V. 67. Iss. 13. P. 3831. https://doi.org/10.1093/jxb/erw080
- 43. Pal M., Yesankar P.J., Dwivedi A., Qureshi A. 2020. Biotic control of harmful algal blooms (HABs): A brief review // J. Environ. Manag. V. 268. Р. 110687. https://doi.org/10.1016/j.jenvman.2020.110687
- 44. Phankhajon K., Somdee A., Somdee T. 2016. Algicidal activity of an actinomycete strain, Streptomyces rameus, against Microcystis aeruginosa // Water Sci. and Technol. V. 74. № 6. P. 1398. https://doi.org/10.2166/ wst.2016.305
- 45. Rezayian M., Niknam V., Ebrahimzadeh H. 2019. Oxidative damage and antioxidative system in algae // Toxicol. Reports. V. 6. P. 1309. https://doi.org/10.1016/j.toxrep. 2019.10.001
- 46. Rossi F., De Philippis R. 2016. Exocellular polysaccharides in microalgae and cyanobacteria: chemical features, role and enzymes and genes involved in their biosynthesis // The Physiology of Microalgae. Switzerland: Springer International Publishing. P. 565. https://doi.org/10.1007/978-3-319-24945-2_21
- 47. Savadova-Ratkus K., Mazur-Marzec H., Karosienė J. et al. 2022. Cyanobacteria and Their Metabolites in Monoand Polidominant Shallow Eutrophic Temperate Lakes // Int. J. Environ. Res. Public Health. V. 19. P. 15341. https://doi.org/10.3390/ijerph192215341
- 48. Sies H. 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress // Redox Biol. V. 11. P. 613. https://doi.org/10.1016/j.redox.2016.12.035
- 49. Song L., Jia Y., Qin B. et al. 2023. Harmful cyanobacterial blooms: biological traits, mechanisms, risks, and control strategies // Annual Rev. Environ. and Res. V. 48. P. 123. https://doi.org/10.1146/annurev-environ-112320-081653
- 50. Sperdouli I., Andreadis S., Moustaka J. et al. 2021. Changes in light energy utilization in photosystem ii and reactive oxygen species generation in potato leaves by the Pinworm Tuta absoluta // Molecules. V. 26. Р. 2984. https://doi.org/10.3390/molecules26102984
- 51. Sun F., Yu P., Xu C. et al. 2021. Influence mechanism of cyanobacterial extracellular polymeric substances on the water quality in dynamic water supply system // Sustainability. V. 13. P. 13913. https://doi.org/10.3390/su132413913
- 52. Tiika R.J., Duan H., Yang H. et al. 2023. Proline metabolism process and antioxidant potential of Lycium ruthenicum Murr. in response to NaCl treatments // Int. J. Mol. Sci. V. 24. P. 13794. https://doi.org/10.3390/ ijms241813794
- 53. Verma N., Prasad S.M. 2021. Regulation of redox homeostasis in cadmium stressed rice field cyanobacteria by exogenous hydrogen peroxide and nitric oxide // Sci Rep. V. 11. P. 2893. https://doi.org/10.1038/s41598-021-82397-9
- 54. Wang L.-F. 2014. Physiological and molecular responses to variation of light intensity in rubber tree (Hevea brasiliensis Muell. Arg.) // PLoS ONE. V. 9. № 2. e89514. https://doi.org/10.1371/journal.pone.0089514
- 55. Wei P., Ma H., Fu H. et al. 2022. Efficient inhibition of cyanobacteria M. aeruginosa growth using commercial food-grade fumaric acid // Chemosphere. V. 301. P. 134659. https://doi.org/10.1016/j.chemosphere.2022.134659
- 56. Yang K., Chen Q., Zhang D. et al. 2017. The algicidal mechanism of prodigiosin from Hahella sp. KA22 against Microcystis aeruginosa // Sci. Rep. V. 7. P. 7750. https://doi.org/10.1038/s41598-017-08132-5
- 57. Yang C., Hou X., Wu D. et al. 2020. The characteristics and algicidal mechanisms of cyanobactericidal bacteria, a review // World J. of Microbiol. and Biotechnol. V. 36. P. 188. https://doi.org/10.1007/s11274-020-02965-5
- 58. Yu Y., Zeng Y., Li J. et al. 2019. An algicidal Streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously // Sci. of the Total Environ. V. 650. P. 34. https://doi.org/10.1016/j.scitotenv.2018.08.433
- 59. Zaytseva T.B., Medvedeva N.G., Mamontova V.N. 2015. Peculiarities of the effect of octyland nonylphenols on the growth and development of microalgae // Inland Water Biol. V. 8. № 4. P. 406. https://doi.org/10.1134/S1995082915040161
- 60. Zeng Y., Wang J., Yang C. et al. 2021. A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact // Sci. Total Environ. V. 769. P. 144489. https://doi.org/10.1016/j.scitotenv.2020.144489
- 61. Zerrifi S.E.A., Redouane E.M., Mugani R. et al. 2020. Moroccan actinobacteria with promising activity against toxic cyanobacteria Microcystis aeruginosa // Environ. Sci. and Pollut. Res. V. 28. № 1. P. 235. https://doi.org/10.1007/s11356-020-10439-2
- 62. Zhang B.-H., Cheng J., Chen W. et al. 2015a. Streptomyces lushanensis sp. nov., a novel actinomycete with anticyanobacterial activity // J. Antibiotics. V. 68. P. 5. https://doi.org/10.1038/ja.2014.85
- 63. Zhang H., Zhang S., Peng Y. et al. 2015b. Effects of marine actinomycete on the removal of a toxicity alga Phaeocystis globose in eutrophication waters // Front. Microbiol. V. 6. P. 474. https://doi.org/10.3389/fmicb.2015.00474
- 64. Zhang B.-H., Che W., Li H.-Q. et al. 2016a. L-valine, an antialgal amino acid from Streptomyces jiujiangensis JXJ 0074T // Appl. Microbiol. Biotechnol. V. 100. P. 4627. https://doi.org/10.1007/s00253-015-7150-8
- 65. Zhang B.-H., Ding Z.-G., Li H.-Q. et al. 2016b. Algicidal activity of Streptomyces eurocidicus JXJ-0089 metabolites and their effects on Microcystis physiology // Appl. Environ. Microbiol. V. 82. P. 132. https://doi.org/10.1128/AEM.01198-16
- 66. Zhang H., Xie Y., Zhang R. et al. 2023. Discovery of a high-efficient algicidal bacterium against Microcystis aeruginosa based on examinations toward culture strains and natural bloom samples // Toxins. V. 15. P. 220. https://doi.org/10.3390/toxins15030220
- 67. Zhou Y., Pen H., Jiang L. et al. 2024. Control of cyanobacterial bloom and purification of bloom-laden water by sequential electro-oxidation and electrooxidation-coagulation // J. Hazardous Materials. V. 462. P. 132729. https://doi.org/10.1016/j.jhazmat.2023.132729
- 68. Zutshi S., Bano F., Ningthoujam M. et al. 2014. Metabolic adaptation to arsenic-induced oxidative stress in Hapalosiphon fontinalis-339 // Int. J. Innov. Res. Sci. Eng. Technol. V. 3. P. 9386.