ОБНБиология внутренних вод Inland Water Biology

  • ISSN (Print) 0320-9652
  • ISSN (Online) 3034-5227

АЛЬГИЦИДНАЯ АКТИВНОСТЬ И МЕХАНИЗМЫ ВОЗДЕЙСТВИЯ МЕТАБОЛИТОВ MK17 НА ЦИАНОБАКТЕРИИ

Код статьи
S30345227S0320965225050065-1
DOI
10.7868/S3034522725050065
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 18 / Номер выпуска 5
Страницы
836-848
Аннотация
Представлены результаты изучения альгицидной активности сырца метаболитов MK17, выделенного из биомассы почвенной актинобактерии MK17, а также исследованы механизмы его стрессорного воздействия на цианобактерии. Метаболиты MK17 проявляют альгицидную активностью в отношении цианобактерий и зеленых водорослей, причем цианобактерии более чувствительны к их воздействию, чем зеленые водоросли. Выявлено, что под влиянием сырца метаболитов MK17 в среде происходит снижение концентраций микроцистинов, образуемых токсигенными цианобактериями и . Показано, что метаболиты MK17 вызывают повреждение функций фотосистемы цианобактерий. Повышенная генерация активных форм кислорода в клетках и, как результат, увеличение содержания малонового диальдегида, активация механизмов антиоксидантной защиты указывают на развитие окислительного стресса в клетках цианобактерий под воздействием метаболитов MK17.
Ключевые слова
Array альгицидные метаболиты MK17 цианобактерии микроцистины экзополисахариды фотосинтез окислительный стресс
Дата публикации
07.12.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
28

Библиография

  1. 1. Дмитриева О.А., Семенова А.С., Казакова Е.Ю. 2024. Структура и динамика планктонных сообществ в прибрежной зоне Куршского залива Балтийского моря в 2017–2021 гг. в период цианобактериальных “цветений” воды // Биология внутр. вод. Т. 17. № 1. С. 22. https://doi.org/10.31857/S0320965224010028
  2. 2. Зайцева Т.Б., Медведева Н.Г. 2019. Молекулярные механизмы стрессового ответа цианобактерии Planktothrix agardhii на воздействие 4-трет-октилфенола // Микробиология. Т. 88. № 4. С. 417. https://doi.org/10.1134/S0026365619040141
  3. 3. Зайцева Т.Б., Мильман Б.Л., Луговкина Н.В. и др. 2015. Влияние октили нонилфенолов на рост, фотосинтетическую активность и токсинообразование цианобактерии Planktothrix agardhii (gom.) Anagnostidis et Komarek // Гидробиол. журн. Т. 51. № 4. С. 40. http://dx.doi.org/10.1615/Hydrob.J.v51.i6.40
  4. 4. Зайцева Т.Б., Сафронова В.И., Медведева Н.Г. 2022. Streptomyces geldanamycininus Z374 – новый штамм с биоцидной активностью в отношении цианобактерий // Теоретическая и прикладная экология. № 1. С. 159. https://doi.org/10.25750/1995-4301-2022-1-159-166
  5. 5. Зайцева T.Б., Руссу A.Д., Медведева Н.Г. 2024. Стрессорное воздействие биоцидных метаболитов актинобактерии Streptomyces geldanamycininus Z374 на цианобактерии Microcystis aeruginosa // Теоретическая и прикладная экология. № 1. C. 175. https://doi.org/10.25750/1995-4301-2024-1-175-183
  6. 6. Маторин Д.Н., Тимофеев Н.П., Батаков A.Д. и др. 2024. Токсическое действие ципрофлоксацина на реакции фотосинтеза микроводоросли Scenedesmus quadricauda (Turp.) Bréb. // Теоретическая и прикладная экология. № 1. С. 150. https://doi.org/10.25750/1995-4301-2024-1-150-156
  7. 7. Aeby H. 1984. Catalase in vitro // Methods Enzymol. V. 105. P. 121.
  8. 8. Almeida A.C., Gomes T., Langford K. et al. 2017. Oxidative stress in the algae Chlamydomonas reinhardtii exposed to biocides // Aquat. Toxicol. V. 189. P. 50. https://doi.org/10.1016/j.aquatox.2017.05.014
  9. 9. Anabtawi H.M., Lee W.H., Al-Anazi A. et al. 2024. Advancements in biological strategies for controlling harmful algal blooms (HABs) // Water. V. 16. P. 224. https://doi.org/10.3390/w16020224
  10. 10. Bates L.S., Walderen R.D., Teare I.D. 1973. Rapid determination of free proline for water stress studies // Plant Soil. V. 39. P. 205.
  11. 11. Broddrick J.T., Ware M.A., Jallet D. et al. 2022. The Integration of physiologically relevant photosynthetic energy flows into whole genome models of light-driven metabolism // Plant J. V. 112. P. 603. https://doi.org/10.1111/tpj.15965
  12. 12. Cassier-Chauvat C., Marceau F., Farci S. et al. 2023. The Glutathione System: a journey from cyanobacteria to higher eukaryotes // Antioxidant. V. 12. P. 1199. https://doi.org/10.3390/antiox12061199
  13. 13. Chen Y.D., Zhu Y., Xin J.P. et al. 2021. Succinic acid inhibits photosynthesis of Microcystis aeruginosa via damaging PSII oxygen-evolving complex and reaction center // Environ. Sci. Pollut. Res. Int. V. 28. № 41. P. 58470. https://doi.org/10.1007/s11356-021-14811-8
  14. 14. Chua A., Sherwood O.L., Fitzhenry L. et al. 2020. Cyanobacteria-derived proline increases stress tolerance in Arabidopsis thaliana root hairs by suppressing programmed cell death // Front. Plant Sci. V. 11. P. 490075. https://doi.org/10.3389/fpls.2020.490075
  15. 15. Costa J.A.V., Lucas B.F., Alvarenga A.G.P. et al. 2021. Microalgae Polysaccharides: an overview of production, characterization, and potential applications // Polysaccharides. V. 2. P. 759. https://doi.org/10.3390/polysaccharides2040046
  16. 16. Coyne K.J., Wang Y., Johnson G. 2022. Algicidal Bacteria: a review of current knowledge and applications to control harmful algal blooms // Front. Microbiol. V. 13. P. 871177. https://doi.org/10.3389/fmicb.2022.871177
  17. 17. de Figueiredo D.R. 2024. Harmful cyanobacterial blooms: going beyond the “green” to monitor and predict HCBs // Hydrobiology. V. 3. P. 11. https://doi.org/10.3390/hydrobiology3010002
  18. 18. Donald L., Pipite A., Subramani R. et al. 2022. Streptomyces: still the biggest producer of new natural secondary metabolites, a current perspective // Microbiol. Res. V. 13. P. 418. https://doi.org/10.3390/microbiolres13030031
  19. 19. Filatova D., Jones M.R., Haley J.A. et al. 2021. Cyanobacteria and their secondary metabolites in three freshwater reservoirs in the United Kingdom // Environ. Sci. Eur. V. 33. https://doi.org/10.1186/s12302-021-00472-4
  20. 20. Gao Q.T., Tam N.F.Y. 2011. Growth, photosynthesis and antioxidant responses of two microalgal species, Chlorella vulgaris and Selenastrum capricornutum, to nonylphenol stress // Chemosphere. V. 82. P. 346. https://doi.org/10.1016/j.chemosphere.2010.10.010
  21. 21. Giannopolitis C.N., Ries S.K. 1977. Superoxide dismutase I. Occurrence in higher plants // Plant Physiol. V. 59. P. 309.
  22. 22. Grigoryeva N.Yu., Chistyakova L.V., Liss A.A. 2018. Spectroscopic techniques for estimation of physiological state of blue-green algae after weak external action // Oceanology. V. 58. № 6. P. 923. https://doi.org/10.1134/s0001437018060061
  23. 23. Gupta A., Sainis J.K., Bhagwat S.G., Chittela R.K. 2021. Modulation of photosynthesis in Synechocystis and Synechococcus grown with chromium (VI) // J. Biosciences. V. 46. https://doi.org/10.1007/s12038-020-00119-1
  24. 24. Herbert D., Phipps P.J., Stange R.E. 1971. Chapter III chemical analysis of microbial cells // Methods in Microbiology. V. 5. Part B. P. 209. https://doi.org/10.1016/S0580-9517 (08)70641-X
  25. 25. Hou X., Yan Y., Wang Y. et al. 2023. An insight into algicidal characteristics of Bacillus Altitudinis G3 from dysfunctional photosystem and overproduction of reactive oxygen species // Chemosphere. V. 310. P. 136767. https://doi.org/10.1016/j.chemosphere.2022.136767
  26. 26. Hu X., Luo K., Ji K. et al. 2022. ABC transporter slr0982 affects response of Synechocystis sp. PCC 6803 to oxidative stress caused by methyl viologen // Res. Microbiol. V. 173. Р. 103888. https://doi.org/10.1016/j.resmic.2021.103888
  27. 27. Huang W., Zhang S.B., Cao K.F. 2010. Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII // Plant. Cell. Physiol. V. 51. № 11. P. 1922. https://doi.org/oi:10.1093/pcp/pcq144
  28. 28. Igwaran A., Kayode A.J., Moloantoa K.M. et al. 2024. Cyanobacteria harmful algae blooms: causes, impacts, and risk management // Water, Air and Soil Pollut. V. 235. № 71. https://doi.org/10.1007/s11270-023-06782-y
  29. 29. Jeffrey S.W., Humprhråy G.E. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton // Biochem. Physiol. Pflanz. V. 167. P. 191.
  30. 30. Kong Y., Wang Q., Chen Y. et al. 2020. Anticyanobacterial process and action mechanism of Streptomyces sp. HJC-D1 on Microcystis aeruginosa // Environ. Progress and Sustainable Energy. e13392. https://doi.org/10.1002/ep. 13392
  31. 31. Kong Y., Wang Y., Miao L. et al. 2022. Recent advances in the research on the anticyanobacterial effects and biodegradation mechanisms of Microcystis aeruginosa with microorganisms // Microorganisms. V. 10. P. 1136. https://doi.org/10.3390/microorganisms10061136
  32. 32. Kuzikova I.L., Medvedeva N.G. 2022. Biocontrol and plant growth promotion potential of new antibiotic-producing Streptomyces fiavogriseus МК17 // IOP Conference Series: Earth and Environ. Sci. V. 979. P. 012020. https://doi.org/10.1088/1755-1315/979/1/012020
  33. 33. Kuzikova I.L., Sukharevich V.I., Shenin Yu.D., Medvedeva N.G. 2010. Biological abilities and identification of the polyene antifungal antibiotic perspective for protection from fungi biodeterioration // Biol. Bull. V. 37. № 2. P. 193. https://doi.org/10.1134/S106235901002015
  34. 34. Latifi A., Ruiz M., Zhang C.C. 2009. Oxidative stress in cyanobacteria // FEMS Microbiol Rev. V. 33. P. 258. https://doi.org/10.1111/j.1574-6976.2008.00134.x
  35. 35. Le V., Ko S.K., Kang M. et al. 2023. Effective control of harmful Microcystis blooms by paucibactin A, a novel macrocyclic tambjamine, isolated from Paucibacter aquatile DH15 // J. Cleaner Production. V. 383. P. 135408. https://doi.org/10.1016/j.jclepro.2022.135408
  36. 36. Liu Y., Li F., Huang Q. 2013. Allelopathic effects of gallic acid from Aegiceras corniculatum on Cyclotella caspia // J. Environ. Sci. V. 25. № 4. P. 776. https://doi.org/10.1016/S1001-0742 (12)60112-0
  37. 37. Liu J., Yang C., Chi Y. et al. 2019. Algicidal characterization and mechanism of Bacillus licheniformis Sp34 against Microcystis aeruginosa in Dianchi Lake // J. Basic Microbiol. V. 59. P. 1112. https://doi.org/10.1002/jobm.201900112
  38. 38. Luo J., Wang Y., Tang S. et al. 2013. Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa // PLoS ONE. V. 8(10). e76444. https://doi.org/10.1371/journal.pone.0076444
  39. 39. Madsen M.A., Semerdzhiev S., Twigg J.D. et al. 2023. Environmental modulation of exopolysaccharide production in the cyanobacterium Synechocystis 6803 // Appl. Microbiol. and Biotechnol. V. 107. P. 6121. https://doi.org/10.1007/s00253-023-12697-9
  40. 40. Mao F., He Y., Gin K.Y-H. 2020. Antioxidant responses in cyanobacterium Microcystis aeruginosa caused by two commonly used UV filters, benzophenone-1 and benzophenone-3, at environmentally relevant concentrations // J. Hazardous Mat. V. 396. Р. 122587. https://doi.org/10.1016/j.jhazmat.2020.122587
  41. 41. Masojídek J., Ranglová K., Lakatos G.E. et al. 2021. Variables governing photosynthesis and growth in microalgae mass cultures // Processes. V. 9. 820. https://doi.org/10.3390/pr9050820
  42. 42. Mignolet-Spruyt L., Xu E., Idänheimo N. et al. 2016. Spreading the news: subcellular and organellar reactive oxygen species production and signalling // J. Exper. Bot. V. 67. Iss. 13. P. 3831. https://doi.org/10.1093/jxb/erw080
  43. 43. Pal M., Yesankar P.J., Dwivedi A., Qureshi A. 2020. Biotic control of harmful algal blooms (HABs): A brief review // J. Environ. Manag. V. 268. Р. 110687. https://doi.org/10.1016/j.jenvman.2020.110687
  44. 44. Phankhajon K., Somdee A., Somdee T. 2016. Algicidal activity of an actinomycete strain, Streptomyces rameus, against Microcystis aeruginosa // Water Sci. and Technol. V. 74. № 6. P. 1398. https://doi.org/10.2166/ wst.2016.305
  45. 45. Rezayian M., Niknam V., Ebrahimzadeh H. 2019. Oxidative damage and antioxidative system in algae // Toxicol. Reports. V. 6. P. 1309. https://doi.org/10.1016/j.toxrep. 2019.10.001
  46. 46. Rossi F., De Philippis R. 2016. Exocellular polysaccharides in microalgae and cyanobacteria: chemical features, role and enzymes and genes involved in their biosynthesis // The Physiology of Microalgae. Switzerland: Springer International Publishing. P. 565. https://doi.org/10.1007/978-3-319-24945-2_21
  47. 47. Savadova-Ratkus K., Mazur-Marzec H., Karosienė J. et al. 2022. Cyanobacteria and Their Metabolites in Monoand Polidominant Shallow Eutrophic Temperate Lakes // Int. J. Environ. Res. Public Health. V. 19. P. 15341. https://doi.org/10.3390/ijerph192215341
  48. 48. Sies H. 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress // Redox Biol. V. 11. P. 613. https://doi.org/10.1016/j.redox.2016.12.035
  49. 49. Song L., Jia Y., Qin B. et al. 2023. Harmful cyanobacterial blooms: biological traits, mechanisms, risks, and control strategies // Annual Rev. Environ. and Res. V. 48. P. 123. https://doi.org/10.1146/annurev-environ-112320-081653
  50. 50. Sperdouli I., Andreadis S., Moustaka J. et al. 2021. Changes in light energy utilization in photosystem ii and reactive oxygen species generation in potato leaves by the Pinworm Tuta absoluta // Molecules. V. 26. Р. 2984. https://doi.org/10.3390/molecules26102984
  51. 51. Sun F., Yu P., Xu C. et al. 2021. Influence mechanism of cyanobacterial extracellular polymeric substances on the water quality in dynamic water supply system // Sustainability. V. 13. P. 13913. https://doi.org/10.3390/su132413913
  52. 52. Tiika R.J., Duan H., Yang H. et al. 2023. Proline metabolism process and antioxidant potential of Lycium ruthenicum Murr. in response to NaCl treatments // Int. J. Mol. Sci. V. 24. P. 13794. https://doi.org/10.3390/ ijms241813794
  53. 53. Verma N., Prasad S.M. 2021. Regulation of redox homeostasis in cadmium stressed rice field cyanobacteria by exogenous hydrogen peroxide and nitric oxide // Sci Rep. V. 11. P. 2893. https://doi.org/10.1038/s41598-021-82397-9
  54. 54. Wang L.-F. 2014. Physiological and molecular responses to variation of light intensity in rubber tree (Hevea brasiliensis Muell. Arg.) // PLoS ONE. V. 9. № 2. e89514. https://doi.org/10.1371/journal.pone.0089514
  55. 55. Wei P., Ma H., Fu H. et al. 2022. Efficient inhibition of cyanobacteria M. aeruginosa growth using commercial food-grade fumaric acid // Chemosphere. V. 301. P. 134659. https://doi.org/10.1016/j.chemosphere.2022.134659
  56. 56. Yang K., Chen Q., Zhang D. et al. 2017. The algicidal mechanism of prodigiosin from Hahella sp. KA22 against Microcystis aeruginosa // Sci. Rep. V. 7. P. 7750. https://doi.org/10.1038/s41598-017-08132-5
  57. 57. Yang C., Hou X., Wu D. et al. 2020. The characteristics and algicidal mechanisms of cyanobactericidal bacteria, a review // World J. of Microbiol. and Biotechnol. V. 36. P. 188. https://doi.org/10.1007/s11274-020-02965-5
  58. 58. Yu Y., Zeng Y., Li J. et al. 2019. An algicidal Streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously // Sci. of the Total Environ. V. 650. P. 34. https://doi.org/10.1016/j.scitotenv.2018.08.433
  59. 59. Zaytseva T.B., Medvedeva N.G., Mamontova V.N. 2015. Peculiarities of the effect of octyland nonylphenols on the growth and development of microalgae // Inland Water Biol. V. 8. № 4. P. 406. https://doi.org/10.1134/S1995082915040161
  60. 60. Zeng Y., Wang J., Yang C. et al. 2021. A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact // Sci. Total Environ. V. 769. P. 144489. https://doi.org/10.1016/j.scitotenv.2020.144489
  61. 61. Zerrifi S.E.A., Redouane E.M., Mugani R. et al. 2020. Moroccan actinobacteria with promising activity against toxic cyanobacteria Microcystis aeruginosa // Environ. Sci. and Pollut. Res. V. 28. № 1. P. 235. https://doi.org/10.1007/s11356-020-10439-2
  62. 62. Zhang B.-H., Cheng J., Chen W. et al. 2015a. Streptomyces lushanensis sp. nov., a novel actinomycete with anticyanobacterial activity // J. Antibiotics. V. 68. P. 5. https://doi.org/10.1038/ja.2014.85
  63. 63. Zhang H., Zhang S., Peng Y. et al. 2015b. Effects of marine actinomycete on the removal of a toxicity alga Phaeocystis globose in eutrophication waters // Front. Microbiol. V. 6. P. 474. https://doi.org/10.3389/fmicb.2015.00474
  64. 64. Zhang B.-H., Che W., Li H.-Q. et al. 2016a. L-valine, an antialgal amino acid from Streptomyces jiujiangensis JXJ 0074T // Appl. Microbiol. Biotechnol. V. 100. P. 4627. https://doi.org/10.1007/s00253-015-7150-8
  65. 65. Zhang B.-H., Ding Z.-G., Li H.-Q. et al. 2016b. Algicidal activity of Streptomyces eurocidicus JXJ-0089 metabolites and their effects on Microcystis physiology // Appl. Environ. Microbiol. V. 82. P. 132. https://doi.org/10.1128/AEM.01198-16
  66. 66. Zhang H., Xie Y., Zhang R. et al. 2023. Discovery of a high-efficient algicidal bacterium against Microcystis aeruginosa based on examinations toward culture strains and natural bloom samples // Toxins. V. 15. P. 220. https://doi.org/10.3390/toxins15030220
  67. 67. Zhou Y., Pen H., Jiang L. et al. 2024. Control of cyanobacterial bloom and purification of bloom-laden water by sequential electro-oxidation and electrooxidation-coagulation // J. Hazardous Materials. V. 462. P. 132729. https://doi.org/10.1016/j.jhazmat.2023.132729
  68. 68. Zutshi S., Bano F., Ningthoujam M. et al. 2014. Metabolic adaptation to arsenic-induced oxidative stress in Hapalosiphon fontinalis-339 // Int. J. Innov. Res. Sci. Eng. Technol. V. 3. P. 9386.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека