- Код статьи
- S30345227S0320965225050065-1
- DOI
- 10.7868/S3034522725050065
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 18 / Номер выпуска 5
- Страницы
- 836-848
- Аннотация
- Представлены результаты изучения альгицидной активности сырца метаболитов MK17, выделенного из биомассы почвенной актинобактерии MK17, а также исследованы механизмы его стрессорного воздействия на цианобактерии. Метаболиты MK17 проявляют альгицидную активностью в отношении цианобактерий и зеленых водорослей, причем цианобактерии более чувствительны к их воздействию, чем зеленые водоросли. Выявлено, что под влиянием сырца метаболитов MK17 в среде происходит снижение концентраций микроцистинов, образуемых токсигенными цианобактериями и . Показано, что метаболиты MK17 вызывают повреждение функций фотосистемы цианобактерий. Повышенная генерация активных форм кислорода в клетках и, как результат, увеличение содержания малонового диальдегида, активация механизмов антиоксидантной защиты указывают на развитие окислительного стресса в клетках цианобактерий под воздействием метаболитов MK17.
- Ключевые слова
- Array альгицидные метаболиты MK17 цианобактерии микроцистины экзополисахариды фотосинтез окислительный стресс
- Дата публикации
- 07.12.2025
- Год выхода
- 2025
- Всего подписок
- 0
- Всего просмотров
- 28
Библиография
- 1. Дмитриева О.А., Семенова А.С., Казакова Е.Ю. 2024. Структура и динамика планктонных сообществ в прибрежной зоне Куршского залива Балтийского моря в 2017–2021 гг. в период цианобактериальных “цветений” воды // Биология внутр. вод. Т. 17. № 1. С. 22. https://doi.org/10.31857/S0320965224010028
- 2. Зайцева Т.Б., Медведева Н.Г. 2019. Молекулярные механизмы стрессового ответа цианобактерии Planktothrix agardhii на воздействие 4-трет-октилфенола // Микробиология. Т. 88. № 4. С. 417. https://doi.org/10.1134/S0026365619040141
- 3. Зайцева Т.Б., Мильман Б.Л., Луговкина Н.В. и др. 2015. Влияние октили нонилфенолов на рост, фотосинтетическую активность и токсинообразование цианобактерии Planktothrix agardhii (gom.) Anagnostidis et Komarek // Гидробиол. журн. Т. 51. № 4. С. 40. http://dx.doi.org/10.1615/Hydrob.J.v51.i6.40
- 4. Зайцева Т.Б., Сафронова В.И., Медведева Н.Г. 2022. Streptomyces geldanamycininus Z374 – новый штамм с биоцидной активностью в отношении цианобактерий // Теоретическая и прикладная экология. № 1. С. 159. https://doi.org/10.25750/1995-4301-2022-1-159-166
- 5. Зайцева T.Б., Руссу A.Д., Медведева Н.Г. 2024. Стрессорное воздействие биоцидных метаболитов актинобактерии Streptomyces geldanamycininus Z374 на цианобактерии Microcystis aeruginosa // Теоретическая и прикладная экология. № 1. C. 175. https://doi.org/10.25750/1995-4301-2024-1-175-183
- 6. Маторин Д.Н., Тимофеев Н.П., Батаков A.Д. и др. 2024. Токсическое действие ципрофлоксацина на реакции фотосинтеза микроводоросли Scenedesmus quadricauda (Turp.) Bréb. // Теоретическая и прикладная экология. № 1. С. 150. https://doi.org/10.25750/1995-4301-2024-1-150-156
- 7. Aeby H. 1984. Catalase in vitro // Methods Enzymol. V. 105. P. 121.
- 8. Almeida A.C., Gomes T., Langford K. et al. 2017. Oxidative stress in the algae Chlamydomonas reinhardtii exposed to biocides // Aquat. Toxicol. V. 189. P. 50. https://doi.org/10.1016/j.aquatox.2017.05.014
- 9. Anabtawi H.M., Lee W.H., Al-Anazi A. et al. 2024. Advancements in biological strategies for controlling harmful algal blooms (HABs) // Water. V. 16. P. 224. https://doi.org/10.3390/w16020224
- 10. Bates L.S., Walderen R.D., Teare I.D. 1973. Rapid determination of free proline for water stress studies // Plant Soil. V. 39. P. 205.
- 11. Broddrick J.T., Ware M.A., Jallet D. et al. 2022. The Integration of physiologically relevant photosynthetic energy flows into whole genome models of light-driven metabolism // Plant J. V. 112. P. 603. https://doi.org/10.1111/tpj.15965
- 12. Cassier-Chauvat C., Marceau F., Farci S. et al. 2023. The Glutathione System: a journey from cyanobacteria to higher eukaryotes // Antioxidant. V. 12. P. 1199. https://doi.org/10.3390/antiox12061199
- 13. Chen Y.D., Zhu Y., Xin J.P. et al. 2021. Succinic acid inhibits photosynthesis of Microcystis aeruginosa via damaging PSII oxygen-evolving complex and reaction center // Environ. Sci. Pollut. Res. Int. V. 28. № 41. P. 58470. https://doi.org/10.1007/s11356-021-14811-8
- 14. Chua A., Sherwood O.L., Fitzhenry L. et al. 2020. Cyanobacteria-derived proline increases stress tolerance in Arabidopsis thaliana root hairs by suppressing programmed cell death // Front. Plant Sci. V. 11. P. 490075. https://doi.org/10.3389/fpls.2020.490075
- 15. Costa J.A.V., Lucas B.F., Alvarenga A.G.P. et al. 2021. Microalgae Polysaccharides: an overview of production, characterization, and potential applications // Polysaccharides. V. 2. P. 759. https://doi.org/10.3390/polysaccharides2040046
- 16. Coyne K.J., Wang Y., Johnson G. 2022. Algicidal Bacteria: a review of current knowledge and applications to control harmful algal blooms // Front. Microbiol. V. 13. P. 871177. https://doi.org/10.3389/fmicb.2022.871177
- 17. de Figueiredo D.R. 2024. Harmful cyanobacterial blooms: going beyond the “green” to monitor and predict HCBs // Hydrobiology. V. 3. P. 11. https://doi.org/10.3390/hydrobiology3010002
- 18. Donald L., Pipite A., Subramani R. et al. 2022. Streptomyces: still the biggest producer of new natural secondary metabolites, a current perspective // Microbiol. Res. V. 13. P. 418. https://doi.org/10.3390/microbiolres13030031
- 19. Filatova D., Jones M.R., Haley J.A. et al. 2021. Cyanobacteria and their secondary metabolites in three freshwater reservoirs in the United Kingdom // Environ. Sci. Eur. V. 33. https://doi.org/10.1186/s12302-021-00472-4
- 20. Gao Q.T., Tam N.F.Y. 2011. Growth, photosynthesis and antioxidant responses of two microalgal species, Chlorella vulgaris and Selenastrum capricornutum, to nonylphenol stress // Chemosphere. V. 82. P. 346. https://doi.org/10.1016/j.chemosphere.2010.10.010
- 21. Giannopolitis C.N., Ries S.K. 1977. Superoxide dismutase I. Occurrence in higher plants // Plant Physiol. V. 59. P. 309.
- 22. Grigoryeva N.Yu., Chistyakova L.V., Liss A.A. 2018. Spectroscopic techniques for estimation of physiological state of blue-green algae after weak external action // Oceanology. V. 58. № 6. P. 923. https://doi.org/10.1134/s0001437018060061
- 23. Gupta A., Sainis J.K., Bhagwat S.G., Chittela R.K. 2021. Modulation of photosynthesis in Synechocystis and Synechococcus grown with chromium (VI) // J. Biosciences. V. 46. https://doi.org/10.1007/s12038-020-00119-1
- 24. Herbert D., Phipps P.J., Stange R.E. 1971. Chapter III chemical analysis of microbial cells // Methods in Microbiology. V. 5. Part B. P. 209. https://doi.org/10.1016/S0580-9517 (08)70641-X
- 25. Hou X., Yan Y., Wang Y. et al. 2023. An insight into algicidal characteristics of Bacillus Altitudinis G3 from dysfunctional photosystem and overproduction of reactive oxygen species // Chemosphere. V. 310. P. 136767. https://doi.org/10.1016/j.chemosphere.2022.136767
- 26. Hu X., Luo K., Ji K. et al. 2022. ABC transporter slr0982 affects response of Synechocystis sp. PCC 6803 to oxidative stress caused by methyl viologen // Res. Microbiol. V. 173. Р. 103888. https://doi.org/10.1016/j.resmic.2021.103888
- 27. Huang W., Zhang S.B., Cao K.F. 2010. Stimulation of cyclic electron flow during recovery after chilling-induced photoinhibition of PSII // Plant. Cell. Physiol. V. 51. № 11. P. 1922. https://doi.org/oi:10.1093/pcp/pcq144
- 28. Igwaran A., Kayode A.J., Moloantoa K.M. et al. 2024. Cyanobacteria harmful algae blooms: causes, impacts, and risk management // Water, Air and Soil Pollut. V. 235. № 71. https://doi.org/10.1007/s11270-023-06782-y
- 29. Jeffrey S.W., Humprhråy G.E. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton // Biochem. Physiol. Pflanz. V. 167. P. 191.
- 30. Kong Y., Wang Q., Chen Y. et al. 2020. Anticyanobacterial process and action mechanism of Streptomyces sp. HJC-D1 on Microcystis aeruginosa // Environ. Progress and Sustainable Energy. e13392. https://doi.org/10.1002/ep. 13392
- 31. Kong Y., Wang Y., Miao L. et al. 2022. Recent advances in the research on the anticyanobacterial effects and biodegradation mechanisms of Microcystis aeruginosa with microorganisms // Microorganisms. V. 10. P. 1136. https://doi.org/10.3390/microorganisms10061136
- 32. Kuzikova I.L., Medvedeva N.G. 2022. Biocontrol and plant growth promotion potential of new antibiotic-producing Streptomyces fiavogriseus МК17 // IOP Conference Series: Earth and Environ. Sci. V. 979. P. 012020. https://doi.org/10.1088/1755-1315/979/1/012020
- 33. Kuzikova I.L., Sukharevich V.I., Shenin Yu.D., Medvedeva N.G. 2010. Biological abilities and identification of the polyene antifungal antibiotic perspective for protection from fungi biodeterioration // Biol. Bull. V. 37. № 2. P. 193. https://doi.org/10.1134/S106235901002015
- 34. Latifi A., Ruiz M., Zhang C.C. 2009. Oxidative stress in cyanobacteria // FEMS Microbiol Rev. V. 33. P. 258. https://doi.org/10.1111/j.1574-6976.2008.00134.x
- 35. Le V., Ko S.K., Kang M. et al. 2023. Effective control of harmful Microcystis blooms by paucibactin A, a novel macrocyclic tambjamine, isolated from Paucibacter aquatile DH15 // J. Cleaner Production. V. 383. P. 135408. https://doi.org/10.1016/j.jclepro.2022.135408
- 36. Liu Y., Li F., Huang Q. 2013. Allelopathic effects of gallic acid from Aegiceras corniculatum on Cyclotella caspia // J. Environ. Sci. V. 25. № 4. P. 776. https://doi.org/10.1016/S1001-0742 (12)60112-0
- 37. Liu J., Yang C., Chi Y. et al. 2019. Algicidal characterization and mechanism of Bacillus licheniformis Sp34 against Microcystis aeruginosa in Dianchi Lake // J. Basic Microbiol. V. 59. P. 1112. https://doi.org/10.1002/jobm.201900112
- 38. Luo J., Wang Y., Tang S. et al. 2013. Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa // PLoS ONE. V. 8(10). e76444. https://doi.org/10.1371/journal.pone.0076444
- 39. Madsen M.A., Semerdzhiev S., Twigg J.D. et al. 2023. Environmental modulation of exopolysaccharide production in the cyanobacterium Synechocystis 6803 // Appl. Microbiol. and Biotechnol. V. 107. P. 6121. https://doi.org/10.1007/s00253-023-12697-9
- 40. Mao F., He Y., Gin K.Y-H. 2020. Antioxidant responses in cyanobacterium Microcystis aeruginosa caused by two commonly used UV filters, benzophenone-1 and benzophenone-3, at environmentally relevant concentrations // J. Hazardous Mat. V. 396. Р. 122587. https://doi.org/10.1016/j.jhazmat.2020.122587
- 41. Masojídek J., Ranglová K., Lakatos G.E. et al. 2021. Variables governing photosynthesis and growth in microalgae mass cultures // Processes. V. 9. 820. https://doi.org/10.3390/pr9050820
- 42. Mignolet-Spruyt L., Xu E., Idänheimo N. et al. 2016. Spreading the news: subcellular and organellar reactive oxygen species production and signalling // J. Exper. Bot. V. 67. Iss. 13. P. 3831. https://doi.org/10.1093/jxb/erw080
- 43. Pal M., Yesankar P.J., Dwivedi A., Qureshi A. 2020. Biotic control of harmful algal blooms (HABs): A brief review // J. Environ. Manag. V. 268. Р. 110687. https://doi.org/10.1016/j.jenvman.2020.110687
- 44. Phankhajon K., Somdee A., Somdee T. 2016. Algicidal activity of an actinomycete strain, Streptomyces rameus, against Microcystis aeruginosa // Water Sci. and Technol. V. 74. № 6. P. 1398. https://doi.org/10.2166/ wst.2016.305
- 45. Rezayian M., Niknam V., Ebrahimzadeh H. 2019. Oxidative damage and antioxidative system in algae // Toxicol. Reports. V. 6. P. 1309. https://doi.org/10.1016/j.toxrep. 2019.10.001
- 46. Rossi F., De Philippis R. 2016. Exocellular polysaccharides in microalgae and cyanobacteria: chemical features, role and enzymes and genes involved in their biosynthesis // The Physiology of Microalgae. Switzerland: Springer International Publishing. P. 565. https://doi.org/10.1007/978-3-319-24945-2_21
- 47. Savadova-Ratkus K., Mazur-Marzec H., Karosienė J. et al. 2022. Cyanobacteria and Their Metabolites in Monoand Polidominant Shallow Eutrophic Temperate Lakes // Int. J. Environ. Res. Public Health. V. 19. P. 15341. https://doi.org/10.3390/ijerph192215341
- 48. Sies H. 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress // Redox Biol. V. 11. P. 613. https://doi.org/10.1016/j.redox.2016.12.035
- 49. Song L., Jia Y., Qin B. et al. 2023. Harmful cyanobacterial blooms: biological traits, mechanisms, risks, and control strategies // Annual Rev. Environ. and Res. V. 48. P. 123. https://doi.org/10.1146/annurev-environ-112320-081653
- 50. Sperdouli I., Andreadis S., Moustaka J. et al. 2021. Changes in light energy utilization in photosystem ii and reactive oxygen species generation in potato leaves by the Pinworm Tuta absoluta // Molecules. V. 26. Р. 2984. https://doi.org/10.3390/molecules26102984
- 51. Sun F., Yu P., Xu C. et al. 2021. Influence mechanism of cyanobacterial extracellular polymeric substances on the water quality in dynamic water supply system // Sustainability. V. 13. P. 13913. https://doi.org/10.3390/su132413913
- 52. Tiika R.J., Duan H., Yang H. et al. 2023. Proline metabolism process and antioxidant potential of Lycium ruthenicum Murr. in response to NaCl treatments // Int. J. Mol. Sci. V. 24. P. 13794. https://doi.org/10.3390/ ijms241813794
- 53. Verma N., Prasad S.M. 2021. Regulation of redox homeostasis in cadmium stressed rice field cyanobacteria by exogenous hydrogen peroxide and nitric oxide // Sci Rep. V. 11. P. 2893. https://doi.org/10.1038/s41598-021-82397-9
- 54. Wang L.-F. 2014. Physiological and molecular responses to variation of light intensity in rubber tree (Hevea brasiliensis Muell. Arg.) // PLoS ONE. V. 9. № 2. e89514. https://doi.org/10.1371/journal.pone.0089514
- 55. Wei P., Ma H., Fu H. et al. 2022. Efficient inhibition of cyanobacteria M. aeruginosa growth using commercial food-grade fumaric acid // Chemosphere. V. 301. P. 134659. https://doi.org/10.1016/j.chemosphere.2022.134659
- 56. Yang K., Chen Q., Zhang D. et al. 2017. The algicidal mechanism of prodigiosin from Hahella sp. KA22 against Microcystis aeruginosa // Sci. Rep. V. 7. P. 7750. https://doi.org/10.1038/s41598-017-08132-5
- 57. Yang C., Hou X., Wu D. et al. 2020. The characteristics and algicidal mechanisms of cyanobactericidal bacteria, a review // World J. of Microbiol. and Biotechnol. V. 36. P. 188. https://doi.org/10.1007/s11274-020-02965-5
- 58. Yu Y., Zeng Y., Li J. et al. 2019. An algicidal Streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously // Sci. of the Total Environ. V. 650. P. 34. https://doi.org/10.1016/j.scitotenv.2018.08.433
- 59. Zaytseva T.B., Medvedeva N.G., Mamontova V.N. 2015. Peculiarities of the effect of octyland nonylphenols on the growth and development of microalgae // Inland Water Biol. V. 8. № 4. P. 406. https://doi.org/10.1134/S1995082915040161
- 60. Zeng Y., Wang J., Yang C. et al. 2021. A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact // Sci. Total Environ. V. 769. P. 144489. https://doi.org/10.1016/j.scitotenv.2020.144489
- 61. Zerrifi S.E.A., Redouane E.M., Mugani R. et al. 2020. Moroccan actinobacteria with promising activity against toxic cyanobacteria Microcystis aeruginosa // Environ. Sci. and Pollut. Res. V. 28. № 1. P. 235. https://doi.org/10.1007/s11356-020-10439-2
- 62. Zhang B.-H., Cheng J., Chen W. et al. 2015a. Streptomyces lushanensis sp. nov., a novel actinomycete with anticyanobacterial activity // J. Antibiotics. V. 68. P. 5. https://doi.org/10.1038/ja.2014.85
- 63. Zhang H., Zhang S., Peng Y. et al. 2015b. Effects of marine actinomycete on the removal of a toxicity alga Phaeocystis globose in eutrophication waters // Front. Microbiol. V. 6. P. 474. https://doi.org/10.3389/fmicb.2015.00474
- 64. Zhang B.-H., Che W., Li H.-Q. et al. 2016a. L-valine, an antialgal amino acid from Streptomyces jiujiangensis JXJ 0074T // Appl. Microbiol. Biotechnol. V. 100. P. 4627. https://doi.org/10.1007/s00253-015-7150-8
- 65. Zhang B.-H., Ding Z.-G., Li H.-Q. et al. 2016b. Algicidal activity of Streptomyces eurocidicus JXJ-0089 metabolites and their effects on Microcystis physiology // Appl. Environ. Microbiol. V. 82. P. 132. https://doi.org/10.1128/AEM.01198-16
- 66. Zhang H., Xie Y., Zhang R. et al. 2023. Discovery of a high-efficient algicidal bacterium against Microcystis aeruginosa based on examinations toward culture strains and natural bloom samples // Toxins. V. 15. P. 220. https://doi.org/10.3390/toxins15030220
- 67. Zhou Y., Pen H., Jiang L. et al. 2024. Control of cyanobacterial bloom and purification of bloom-laden water by sequential electro-oxidation and electrooxidation-coagulation // J. Hazardous Materials. V. 462. P. 132729. https://doi.org/10.1016/j.jhazmat.2023.132729
- 68. Zutshi S., Bano F., Ningthoujam M. et al. 2014. Metabolic adaptation to arsenic-induced oxidative stress in Hapalosiphon fontinalis-339 // Int. J. Innov. Res. Sci. Eng. Technol. V. 3. P. 9386.