ОБНБиология внутренних вод Inland Water Biology

  • ISSN (Print) 0320-9652
  • ISSN (Online) 3034-5227

ГЕНЕТИЧЕСКАЯ ИЗМЕНЧИВОСТЬ РЕЧНОГО ОКУНЯ Perea fluviatilis В ОЗЕРНО-РЕЧНОЙ СИСТЕМЕ НАЦИОНАЛЬНОГО ПАРКА “СЕБЕЖСКИЙ”

Код статьи
S30345227S0320965225030099-1
DOI
10.7868/S3034522725030099
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 18 / Номер выпуска 3
Страницы
488-497
Аннотация
На основании 10 микросателлитных локусов ядерной ДНК впервые проведен анализ генетической изменчивости речного окуня Perea fluviatilis (L., 1758) из четырех водных объектов Национального парка “Себежский” Себежского р-на Псковской обл., входящих в единую озерно-речную систему. Средние оценки аллельного разнообразия микросателлитных локусов и наблюдаемой гетерозиготности были A = 8.87 и HE = 0.694 и достоверно не различались между исследованными локальностями. Общая генетическая дифференциация окуня составила θ = 0.002, 95% CI (−0.0007; 0.005) и была достоверно незначимой. Популяционно-генетическая структурированность на основании исследованных мультилокусных генотипов методом анализа Байеса не выявлена. Полученные данные свидетельствуют о высоком уровне потока генов у окуня на всей исследованной акватории и дают возможность предположить наличие генетически единой панимиксной популяции в системе себежских озер и рек.
Ключевые слова
популяционно-генетическая структура генофонд микросателлиты Perca fluviatilis ООПТ Национальный парк “Себежский”
Дата публикации
08.12.2025
Год выхода
2025
Всего подписок
0
Всего просмотров
17

Библиография

  1. 1. Александров Ю.В., Курьянович В.И. 2001. Миноги (Petromyzonidae, Cyclostomata) и рыбы (Pisces) // Биоразнообразие и редкие виды Национального парка “Себежский”. СПб.: Тр. СПбОЕ. Сер. 6. Т. 4. С. 199.
  2. 2. Атлас пресноводных рыб России. 2002. М.: Наука. Т. 2. С. 64.
  3. 3. Бачевская Л.Т., Переверзева В.В., Агапова Г.А., Примак А.А. 2023. Генетическое разнообразие речного окуня (Perca uviatilis Linnaeus, 1758) из некоторых рек России // Успехи соврeм. биол. T. 143. № 3. С. 261. https://doi.org/10.31857/S0042132423030031
  4. 4. Берг Л.С. 1949. Рыбы пресных вод СССР и сопредельных стран. М..: Изд-во АН СССР. Т.3. С. 1031.
  5. 5. Вейр Б.C. 1995. Анализ генетических данных. М.: Мир.
  6. 6. Жигилева О.Н., Егорова А.Г., Сарьянова А.В. 2019. Морфология и генетическая изменчивость речного окуня Perca uviatilis (Percidae) речных и озерных экосистем Западной Сибири // Вестн. рыбохоз. науки. Т. 6. № 3(23). С. 4.
  7. 7. Жигилева О.Н., Егорова А.Г., Хохлов Д.А. 2017. Особенности генетики популяций некоторых видов хищных рыб Обь-Иртышского бассейна. Проблемы популяционной биологии // Матер. ХII Всерос. популяционного семинара. С. 91.
  8. 8. Кашулин Н.А., Лукин А.А., Амундсен П.А. 1999. Рыбы пресных вод Субарктики как биоиндикаторы техногенного загрязнения. Апатиты: Изд-во Кольского науч. центра РАН.
  9. 9. Лакин Г.Ф. 1990. Биометрия. М.: Изд-во “Высш. шк.”.
  10. 10. Лобырев Ф.С., Пивоваров Е.А., Хохряков В.Р., Павлов С.Д. 2023. Популяционные характеристики плотвы, густеры и окуня в оз. Озерявки (Национальный парк “Себежский”) // Тр. ВНИРО. Т. 191. С. 37. https://doi.org/10.36038/2307-3497-2023-191-37-52
  11. 11. Лобырев Ф.С., Семенова А.В., Мельникова М.Н. и др. 2024. Генетические особенности популяции леща Abramis brama из озерной системы национального парка “Себежский” // Биология внутр. вод. № 4. С. 604. https://doi.org/10.31857/S0320965224040087
  12. 12. Правдин И.Ф. 1966. Руководство по изучению рыб (преимущественно пресноводных). М.: Изд-во “Пищ. пром-сть”.
  13. 13. Behrmann-Godel J., Gerlach G., Eckmann R. 2006. Kin and population recognition in sympatric Lake Constance perch (Perca uviatilis L.): can assortative shoaling drive population divergence // Behav. Ecol. Sociobiol. V. 59. P. 461. https://doi.org/10.1007/s00265-005-0070-3
  14. 14. Bel ore N.M., Anderson S.L. 2001. Effects of contaminants on genetic patterns in aquatic organisms: a review // Mutat. Res. V. 489. P. 97. https://doi.org/10.1016/S1383-5742 (01)00065-5
  15. 15. Bergek S., Björklund M. 2007. Cryptic barriers to dispersal within a lake allow genetic differentiation of Eurasian perch // Evolution. V. 61. P. 2035. https://doi.org/10.1111/j.1558-5646.2007.00163.x
  16. 16. Bergek S., Björklund M. 2009. Genetic and morphological divergence reveals local subdivision of perch (Perca uviatilis L.) // Biol. J. Linn. Soc. V. 96. P. 746. https://doi.org/10.1111/j.1095-8312.2008.01149.x
  17. 17. Bergek S., Olsson J. 2009. Spatiotemporal analysis shows stable genetic differentiation and barriers to dispersal in the Eurasian perch (Perca uviatilis L.) // Evol. Ecol. Res. V. 11. P. 827.
  18. 18. Bergek S., Sundblad G., Björklund M. 2010. Population differentiation in perch Perca uviatilis: Environmental effects on gene ow // Fish Biol. V. 76. P. 1159. https://doi.org/10.1111/j.1095-8649.2010.02565.x
  19. 19. Bodaly R A., Ward R.D., Mills C.A. 1989. A genetic stock study of perch, Perca uviatilis L., in Windermere // Aquat. Sci. P. 965. https://doi.org/10.1007/BF00878023
  20. 20. Butkauskas D., Ragauskas A., Sruoga A. et al. 2012. Investigations into genetic diversity of the perch inhabiting Ignalina nuclear power plant cooler and other inland water bodies of Lithuania on the basis of mtDNA analysis // Veterinarija ir Zootechnika. V. 60. P. 7.
  21. 21. DeWoody J.A., Avise J.C. 2000. Microsatellite variation in marine, freshwater and anadromous shes compared with other animals // J. Fish Biol. V. 56. P. 461. https://doi.org/10.1111/j.1095-8649.2000.tb00748.x
  22. 22. DiBattista J.D. 2008. Patterns of genetic variation in anthropogenically impacted populations // Conserv. Genet. V. 9. P.141. https://doi.org/10.1007/s10592-007-9317-z
  23. 23. Ericson G., Lindesjöö E., Balk L. 1998. DNA adducts and histopathological lesions in perch (Perca uviatilis) and northern pike (Esox lucius) along a polycyclic aromatic hydrocarbon gradient on the Swedish coastline of the Baltic Sea // Can. J. Fish Aquat. Sci. V. 55. P. 815. https://doi.org/10.1139/f97-296
  24. 24. Ericson G., Larsson A. 2000. DNA adduct in perch (Perca uviatilis) living in coastal water polluted with bleached pulp mill effluents // Ecotoxicol. Environ. Safety. V. 46. P. 167. https://doi.org/10.1006/eesa.1999.1892
  25. 25. Eschbach E., Nolte A.W., Kohlmann K. et al. 2021. Genetic population structure of a top predatory sh (northern pike, Esox lucius) covaries with anthropogenic alteration of freshwater ecosystems // Freshwater Biol. V. 66. P. 884. https://doi.org/10.1111/fwb.13684
  26. 26. Faulks L.K., Gilligan D.M., Beheregaray L.B. 2011. The role of anthropogenic vs. natural in stream structures in determining connectivity and genetic diversity in an endangered freshwater sh, Macquarie perch (Macquaria australasica) // Evol. Appl. V. 4. P. 589. https://doi.org/10.1111/j.1752-4571.2011.00183.x
  27. 27. Fokina O., Grauda D., Rashal I. 2015. Genetic diversity of two perch Perca uviatilis populations of the Latgale region, Environment // Tech. Res. V. 11. P. 96. https://doi.org/10.17770/etr2015vol2.280
  28. 28. Gerlach G., Schardt U., Eckmann R., Meyer A. 2001. Kinstructured subpopulations in Eurasian perch (Perca uviatilis L.) // Heredity. V. 86. P. 213. https://doi.org/10.1046/j.1365-2540.2001.00825.x
  29. 29. Gharibkhani M. 2009. The genetic structure and phylogenetics of pikeperch (Sander lucioperca) Anzali and Amirkolaye wetlands and perch (Perca uviatilis) populations in Aras Dam and south-west of the Caspian Sea. PhD Thesis, Islamic Azad University, Science and Research Branch, Tehran.
  30. 30. Hedgecock D. 1994. Does variance in reproductive success limit effective population size of marine organisms in genetics and evolution of aquatic organisms. London: Chapman & Hall.
  31. 31. Imbrock F., Appenzeller A., Eckmann R. 1996. Diet and seasonal distribution of perch in Lake Constance: a hydroacoustic study and in situ observations // J. Fish Biol. V. 49. P. 1.
  32. 32. Kalinowski S.T., Wagner A.P., Taper M.L. 2006. MLRelate: a computer program for maximum likelihood estimation of relatedness and relationship // Mol. Ecol. V 6. P. 576. https://doi.org/10.1111/j.1471-8286.2006.01256.x
  33. 33. Karås P., Neuman E., Sandström O. 1991. Effects of a pulp mill effluent on the population dynamics of perch, Perca uviatilis // Can. J. Fish Aquat. Sci. V. 48. P. 28. https://doi.org/10.1139/f91-004
  34. 34. Khadher S.B., Agnèse J.F., Milla S. et al. 2015. Patterns of genetic structure of Eurasian perch (Perca uviatilis L.) in Lake Geneva at the end of the spawning season // J. Great Lakes Res. V. 4. P. 846. https://doi.org/10.1016/j.jglr.2015.04.006
  35. 35. Kipling C., Le Cren E.D. 1984. Mark recapture experiments on sh in Windermere // J. Fish. Biol. V. 24. P. 395. https://doi.org/10.1111/j.1095-8649.1984.tb04811.x
  36. 36. Lewis P.O., Zaykin D. 2001. Genetic Data Analysis: Computer program for the analysis of allelic data. Version 1.0 (d 16c). Free program distributed by the authors over the internet from https://lewis.eeb.unconn.edu/lewishome/software.html
  37. 37. Lindesjöö E., Thulin J. 1990. Fin erosion of perch Perca uviatilis and ruffe Gymnocephalus cernua in a pulp mill effluent area // Dis. Aquat. Organ. V. 8. P. 119. https://doi.org/10.3354/dao008119
  38. 38. Mantel N. 1967. The detection of disease clustering and a generalized regression approach // Cancer Research. V. 27. P. 209.
  39. 39. Nesbø C., Magnhagen C., Jakobsen K. 1998. Genetic differentiation among stationary and anadromous perch (Perca ftuviatilis) in the Baltic Sea // Hereditas. V. 129. P. 241. https://doi.org/10.1111/j.1601-5223.1998.00241.x
  40. 40. Nesbø C., Fossheim T., Vollestad L., Jakobsen K. 1999. Genetic divergence and phylogeographic relationships among European perch (Perca uviatilis) populations re ect glacial refugia and postglacial colonization // Mol. Ecol. V. 8. P. 1387. https://doi.org/10.1046/j.1365-294x.1999.00699.x
  41. 41. Olsson J., Mo K., Florin A.B. et al. 2011. Genetic population structure of perch Perca uviatilis along the Swedish coast of the Baltic Sea // J. Fish Biol. V. 79. P. 122. https://doi.org/10.1111/j.1095-8649.2011.02998.x
  42. 42. Piry S., Luikart G., Cornuet J.M. 1999. Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data // J. Heredity. V. 90. P. 502. https://doi.org/10.1093/jhered/90.4.502
  43. 43. Pritchard J.K., Stephens M., Donnelly P. 2000. Inference of population structure using multilocus genotype data // Genetics. V. 155. P. 945. https://doi.org/10.1093/genetics/155.2.945
  44. 44. Ragauskas A., Ignatavičienė I., Rakauskas V. et al. 2023. Trends of eurasian perch (Perca uviatilis) mtDNA ATP6 region genetic diversity within the hydro-systems of the eastern part of the Baltic Sea in the anthropocene // Animals. V. 13. P. 3057. https://doi.org/10.3390/ani13193057
  45. 45. Raymond M., Rousset F. 1995. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism // J. Heredity. V. 8. P. 248. https://doi.org/10.1093/oxfordjournals.jhered.a111573
  46. 46. Rice W.R. 1989. Analyzing tables of statistical tests // Evolution. V. 43. P. 223. https://doi.org/10.1111/j.1558-5646.1989.tb04220.x
  47. 47. Říha M., Hladík M., Mrkvička T. et al. 2013. Post-spawning dispersal of tributary spawning sh species to a reservoir system // Folia Zoologica. V. 62. P. 1. https://doi.org/10.25225/fozo.v62.i1.a1.2013
  48. 48. Slatkin M. 1985. Gene ow in natural populations // Ann. Rev. Ecol. Syst. V. 16. P. 393.
  49. 49. Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data // Mol. Ecol. Notes. V. 4. P. 535. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  50. 50. Wang N., Eckmann R. 1994. Distribution of perch (Perca uviatilis L.) during their rst year of life in Lake Constance // Hydrobiologia. V. 277. P. 135. https://doi.org/10.1007/BF00007295
  51. 51. Waples R.S. 1998. Separating the wheat from the chaff: patterns of genetic differentiation in high gene ow species // J. Heredity. V. 89. P. 438. https://doi.org/10.1093/jhered/89.5.438
  52. 52. Weir B.S., Hill W.G. 2002. Estimating F-statistics // Ann. Rev. Genet. V. 36. P. 721. https://doi.org/10.1146/annurev.genet.36.050802.093940
  53. 53. Wright S. 1943. Isolation by distance // Genetics. V. 28. P. 114.
  54. 54. Wright S. 1951. The genetical structure of populations // Ann. Eugenics. V. 15. P. 323.
  55. 55. Xu P., Lu C., Sun Z. et al. 2022. In silico screening and development of microsatellite markers for genetic analysis in Perca uviatilis // Animals. V. 12. P. 1809. https://doi.org/10.3390/ani12141809
  56. 56. Zamora L., Moreno-Amich R. 2002. Quantifying the activity and movement of perch in a temperate lake by integrating acoustic telemetry and a geographic information system // Aquatic telemetry: proceedings of the fourth conference on sh telemetry in Europe. Netherlands: Springer. https://doi.org/10.1023/A:1021396016424
  57. 57. Zhigileva O.N., Egorova A.G. 2022. Genetic variability and phenotypic diversity in populations of the Eurasian perch, Perca uviatilis (Actinopterygii, Percidae) // Acta Biol. Sibirica. V. 8. P. 237. https://doi.org/10.1134/S2079086423060026
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека